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Abstract

In this work, we are interested in studying variations in plasma glucose and insulin levels over
time using a fractional-order version of a mathematical model. Applying the fractional-order
Caputo derivative, we can investigate different concentration rates among insulin, glucose, and
healthy β-cells. Themain aim is to obtain the numerical solution of the proposedmodel in order
to show variations in plasma glucose and insulin levels over time, by applying the generalized
Euler method. The local stability analysis of the proposed (discretization) Caputo fractional-
order model was discussed. To check the feasibility of our analysis, we have investigated some
numerical simulations for various fractional orders by varying values of the parameters with
help of Mathematica. Numerical simulations were in good agreement with the theoretical find-
ings. Three specific numerical examples are given as applications of the main results.
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1 Introduction

The fractional calculus is the calculus of non-integer order, which is a generalization of integral
and differential integer-order calculus. Fractional calculus was initially applied by Abel [1] in his
answer to the Tautochrone problem. Therefore, it is mostly applied in physics, biology, medicine,
viscoelasticity, bioengineering, economics, and control theory, and it would be too long to list all
the research dealing with that. For instance, the reader can refer to [4, 10, 12] and references
therein, among others.

It is well known that mathematical models are an excellent option to study and predict natu-
ral phenomena to some extent. In this way, fractional-order theory gives us a framework to add
memory properties and an additional dimension to the mathematical models in order to more ac-
curately approximate real-world phenomena. Numerous diverse metabolic issues can arise, such
as type I and type II diabetes, hyperinsulinemia, hypoglycemia, etc., in the human glucose-insulin
regulation system. Therefore, it is essential to characterize and analyze such a biological system.
Thus, the analysis and characterization of such a biological system are amust. The fractional-order
operator provides improved accuracy of the underlying glucose-insulin disorders.

Stability analysis is an important technique for the analysis of mathematical models. It shows
how mathematical models respond to modifications. The use of stability analysis is required to
have information on both the stability of solutions to differential equations and the stability of
dynamical systems. Several novel and significant advances have been made in stability analysis
and analytical solutions for differential equations (see, for example, but not limited to, [3, 20, 21]).

There is a voluminous literature that uses mathematical models to deal with the dynamics of
the connection between glucose and the hormone that controls it, insulin. Some of the papers are
[6, 9, 17]. In 1971, Atkins in [7] noted that suchmathematicalmodels had one ormore flaws. Those
flaws were the lack of some of the desired data, the fact that it is very complicated to study the
model for a small amount of used data, the experiment’s time frame is too short, and the models
are not compatible with existing data. Furthermore, there are no simulations that were carried
out to examine the mathematical model. In 1987, Bajaj et al. [8] proposed the following model:

dx

dt
= R1y −R2x+ c1,

dy

dt
=
R3N

z
−R4x+ c2,

dz

dt
= R5y(T − z) +R6z(T − z)−R7z.

(1)

Bajaj et al. developed and numerically discussed the model (1) in [8]. They used the Runge-
Kutta-Merson integration scheme to numerically solve the set of three nonlinear coupled ordinary
differential equations (1).

This work considers a nonlinear fractional-order (glucose-insulin-β-cells) model with a non-

linear incidence rate in the sense of the Caputo derivative dν

dtν
and is given by

dνx

dtν
= R1y −R2x+ c1,

dνy

dtν
=
R3N

z
−R4x+ c2,

dνz

dtν
= R5y(T − z) +R6z(T − z)−R7z,

(2)
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with the initial conditions
x(0) = x0, y(0) = y0, z(0) = z0,

where R1 is the rate at which insulin concentration increases due to blood glucose increase, R2

is the rate at which insulin is reduced, R3 is the rate at which β-cells are lost, R4 is the decrease
rate of glucose in response to insulin production, R5 is the increase rate in dividing β-cells due to
interaction between them and blood glucose, R6 is the rate of increase in β-cells due to dividing
and non-dividing them,R7 is the rate of decrease in β-cells due to its current level,N is a constant,
c1 and c2 are the constant rates of increase in x and y, respectively, the total number of dividing
and non-dividing is represented by T , the plasma insulin concentrations are represented by x, the
plasma glucose concentrations are represented by y, and the β-cells density in the proliferative
phase is represented by z.

The contribution of this study is to show that fractional order modeling outperforms integer
order modeling. According to [5], the existence, uniqueness, nonegativity, and boundedness of
the solution to the equation (2) have all been studied. The global stability of the infection-free and
endemic equilibrium point of the proposed model has been fully established using the Lyapunov-
LaSalle type theorem. The analysis of the local stability of the discretization model is discussed.
Further, the numerical solution of the model (2) is obtained by applying the generalized Euler
discretizationmethod in order to describe the changes in time of plasma glucose and insulin levels.
Moreover, some numerical results and simulations for three different test problems are discussed.
Our strategy relies on applying the generalized Euler discretization method that was established
by Odibat andMomani in [14]. Themodel is also developed using a numerical algorithm, and the
results of a computational experiment are presented. Applications of the suggested method are
also discussed, with the proposed and modified methods producing impressive results. Using
the suggested methodologies, the numerical solutions to the model (2) are in good agreement
with the analytical solutions. We can infer that the suggested approaches, which were derived or
changed in this research, are quite effective based on the numerical results produced utilizing the
provided methods. The results of this manuscript could potentially complement the literature on
this subject (see, for example, but not limited to, [2, 18, 19]).

The structure of this article is as follows: Section 2 describes the application of the generalized
Euler discretization method and discusses the analysis of the local stability of the discretization
model. Section 3 gives some numerical results and simulations for three different test problems.
Section 4 presents our conclusions.

2 Generalized Euler Method (See [14])

Recall that d
ν

dtν
is called the Caputo fractional derivative of order ν and is defined in [16] as:

For ν > 0, n− 1 < ν < n, n ∈ N,

dν

dtν
=


1

δ(n− ν)

∫ t

0

f (n)(s)

(t− s)ν+1−n ds, n− 1 < ν < n,

dn

dtn
f, ν = n.

To investigate the numerical solution of the model (2), we use in this section the generalized Euler
discretaization approach, that was established by Odibat and Momani (see [14]). Let us start by
writing the Caputo fractional-order model (2) in the following system form:

DνM = F (M), t ∈ [0, T ], 0 < ν ≤ 1, M(0) = M0, (3)
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where

M =

xy
z

 , M0 =

x0y0
z0

 , F (M) =

 R1y −R2x+ c1
R3N

z
−R4x+ c2

R5y(T − z) +R6z(T − z)−R7z

 .
The generalized Euler formula for the model (2) is given by the following proposition.

Prop 2.1. Let [0, a] be the interval for the solution of the model (2). The general formula for the generalized
Euler method of (2) is provided by:

x(tj+1) = x(tj) +
hν

Γ(ν + 1)
[R1y(tj)−R2x(tj) + c1] ,

y(tj+1) = y(tj) +
hν

Γ(ν + 1)

[
R3N

z(tj)
−R4x(tj) + c2

]
, (4)

z(tj+1) = z(tj) +
hν

Γ(ν + 1)
[R5y(tj)(T − z(tj)) +R6z(tj)(T − z(tj))−R7z(tj)],

where the Euler gamma function Γ is defined as:

Γ(z) =

∫ ∞
s

e−ttz−1dt, t > 0

and h =
a

k
is the step size in the sub-intervals [tj , tj+1] of the interval [0, a].

Proof. Consider the following initial value problem:

dνx(t)

dtν
= f1(t, x, y, z) = R1y(t)−R2x(t) + c1,

dνy(t)

dtν
= f2(t, x, y, z)) =

R3N

z(t)
−R4x(t) + c2,

dνz(t)

dtν
= f3(t, x, y, z) = R5y(t)(T − z(t)) +R6z(t)(T − z(t))−R7z(t),

(5)

for t ∈ [0, T ], 0 < α ≤ 1, using the initial conditions

x(0) = x0, y(0) = y0, z(0) = z0.

We need to produce a collection of {(tj , f(tj)} points and use the points for our approximation.
Let [0, a] be the interval over which the solution of (5) is to be discussed. The [0, a] interval is
subdivided into k sub-intervals [tj , tj+1] of the same width h =

a

k
by using the tj = jh nodes,

where j = 0, 1, · · · , k. Assume that x, y, z,Dν x,Dν y,Dν z,D2ν x,D2ν y andD2ν z are continuous
in [0, a], and use Taylor’s generalized formula in [13] to extend y to t = ts = 0. Thus, there is a
value c1 for each value t, so that

x(t) = x(ts) + (Dν x(t))(ts)
tν

Γ(ν + 1)
+ (D2ν x(t))(c1)

t2ν

Γ(2ν + 1)

y(t) = y(ts) + (Dν y(t))(ts)
tν

Γ(ν + 1)
+ (D2ν y(t))(c1)

t2ν

Γ(2ν + 1)

z(t) = z(ts) + (Dν z(t))(ts)
tν

Γ(ν + 1)
+ (D2ν z(t))(c1)

t2ν

Γ(2ν + 1)
.

(6)
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When (Dν x(t))(ts) = f1(ts, x(ts), y(ts), z(ts)), (Dν y(t))(ts) = f2(ts, x(ts), y(ts), z(ts)), (Dν z(t))(ts) =
f3(ts, x(ts), y(ts), z(ts)), and h = t are substituted into (6), then we get

x(t1) = x(ts) + f1(ts, x(ts), y(ts), z(ts))
hν

Γ(ν + 1)
+ (D2ν x(t))(c1)

h2ν

Γ(2ν + 1)

y(t1) = y(ts) + f2(ts, x(ts), y(ts), z(ts))
hν

Γ(ν + 1)
+ (D2ν y(t))(c1)

h2ν

Γ(2ν + 1)

z(t1) = z(ts) + f3(ts, x(ts), y(ts), z(ts))
hν

Γ(ν + 1)
+ (D2ν z(t))(c1)

h2ν

Γ(2ν + 1)
.

(7)

The second-order term (including h2ν) may be ignored if the h step size is small enough, and we
will obtain it.
The discrete form of (5) can be defined in terms of (7) as follows:

x(t1) = x(ts) +m [R1y(ts)−R2x(ts) + c1] ,

y(t1) = y(ts) +m

[
R3N

z(ts)
−R4x(ts) + c2

]
,

z(t1) = z(ts) +m[R5y(ts)(T − z(ts)) +R6z(ts)(T − z(ts))−R7z(ts)],

(8)

wherem =
hν

Γ(ν + 1)
.

The method is repeated until a point sequence that approximates the solution is obtained.
Hence, when tj+1 = tj + h, (4) is obtained.
When j = 0, 1, · · · ,−k− 1, (4) is obviously reduced to the classical Euler scheme when ν = 1.

2.1 Stability Analysis of a Discretization Model

In this subsection, the local stability of the discretization model will be analyzed in sense of
the general formula for the generalized Euler method (4).
Lemma 2.1. Consider the equilibrium point Ē = (xs, ys, zs), where the steady-state values xs and ys are
provided by:

xs =
R4N + c1zs

R5zs
, ys =

R4R7N + (R7c1 −R5c2)zs
R5R6zs

and zs satisfies
z3s + q1z

2
s + q2zs + q3 = 0,

where
q1 =

(R3c1 − TR2c1 +R7c1 −R5c2)R1

R2R5R6
,

q2 =
(R4R7N − TR7c1 + TR5c2)R1

R2R5R6
,

q3 =
TR1R4R7N

R2R5R6
.

Then, Ē is locally asymptotically stable.

Proof. The Jacobian matrix J(Ē) of the model (4) is given by:

J(Ē) =


1−mR2 mR1 0

−mR4 1
−mR3N

z2s
0 mR5(T − zs) 1−m(R5ys −R6T + 2R6zs +R7)

 . (9)

5



A. Alalyani Malaysian J. Math. Sci. 17(1): 1–12 (2023) 1 - 12

The characteristic polynomial of (9) is:

P (λ) = β0λ
3 + β1λ

2 + β2λ+ β3 = 0, (10)

where

β0 = 1,

β1 = −3 +m(R2 +R7 +R5ys −R6T + 2R6zs),

β2 = 3−m(2R2 + 2R7 + 2R5ys − 2R6T + 4R6zs)

+m2

(
R1R4 +R2R7 −R2R6T +R2R5ys + 2R2R6zs +

R3R5N(T − zs)
z2s

)
,

β3 = −1 +m(R2 +R7 +R5ys −R6T + 2R6zs)

−m2

(
R1R4 +R2R7 −R2R6T +R2R5ys + 2R2R6zs +

R3R5N(T − zs)
z2s

)
+m3

(
R1R4R7 −R1R4R6T +R1R4R5ys + 2R1R4R6zs +

R2R3R5N(T − zs)
z2s

)
.

Let us mention that the Routh-Hurwitz Array for (9) is:

D(Ē) = −

∣∣∣∣∣∣∣∣∣∣
β3 β1
β2 β0

(β1β2 − β0β3)

β2
0

β0 0

∣∣∣∣∣∣∣∣∣∣
.

According to the Routh-Hurwitz conditions [11], confirming that (β1β2 − β0β3)

β2
has the same sign

with β1, then the three eigenvalues have negative real parts. Since

β0 > 0, β1 > 0, β2 > 0, β3 > 0,
(β1β2 − β0β3)

β2
> 0 and β1β2 > β0β3

hold, then the Routh-Hurwitz stability criterions are satisfied, and Ē is locally asymptotically sta-
ble.

3 Numerical Results and Simulations

In this section, we give some numerical outputs and simulations for each of the 3 different test
problems. The generalized Euler discretization method was used to obtain the numerical outputs
and simulations.

Consider the following model

x(tj+1) = x(tj) +m
[
0.79196 y(tj)− 0.24537x(tj) + 0.37538

]
,

y(tj+1) = y(tj) +m
[9.52033 (1.4)

z(tj)
− 2.84575x(tj) + 1.03482

]
, (11)

z(tj+1) = z(tj) +m
[
0.02139 y(tj)(1.95− z(tj)) + 0.02747z(tj)(1.95− z(tj))− 0.18311 z(tj)

]
,

6
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subject to the initial conditions(
x(0), y(0), z(0)

)
=
(

6.03502, 1.79015, 0.825837
)
.

Table 1: Some Numerical outputs of (x, y, z) for Example 1.

(x, y, z) (x, y, z) (x, y, z)
ν = 0.8 ν = 0.95 ν = 1

(6.04344 , 1.79015 , 0.823607) (6.03903 , 1.79015 , 0.824775) (6.03814 , 1.79015 , 0.82501)
(6.05181 , 1.79068 , 0.821391) (6.04303 , 1.79027 , 0.823716) (6.04126 , 1.79022 , 0.824185)
(6.06013 , 1.79175 , 0.819187) (6.04702 , 1.79051 , 0.822659) (6.04437 , 1.79037 , 0.823362)
(6.06842 , 1.79336 , 0.816997) (6.051 , 1.79087 , 0.821606) (6.04747 , 1.79059 , 0.822541)
(6.07669 , 1.7955 , 0.81482) (6.05497 , 1.79136 , 0.820556) (6.05056 , 1.79088 , 0.821721)
(6.08495 , 1.79819 , 0.812657) (6.05893 , 1.79196 , 0.819508) (6.05365 , 1.79125 , 0.820903)
(6.09322 , 1.80142 , 0.810508) (6.06288 , 1.79269 , 0.818464) (6.05674 , 1.79169 , 0.820088)
(6.10149 , 1.80518 , 0.808374) (6.06683 , 1.79354 , 0.817423) (6.05982 , 1.7922 , 0.819273)
(6.1098 , 1.80948 , 0.806255) (6.07078 , 1.79451 , 0.816385) (6.0629 , 1.79279 , 0.818461)
(6.11814 , 1.81432 , 0.80415) (6.07473 , 1.7956 , 0.81535) (6.06598 , 1.79345 , 0.817651)

For the parameters of themodel (11), we chose different values of ν = {0.8, 0.95, 1}. Figures (1(a)-
1(c)) show the dynamical behavior of x(t), y(t) and z(t) for various values of ν = {0.8, 0.95, 1} for
the parameters of (11). Figures (2(a)-2(c)) show the behavior of x(t), y(t) and z(t) versus time
using various values of ν = {0.8, 0.95, 1} for the parameters of (11). By Lemma 2.1, Ē is asymp-
totically stable for the parameters of the model (11), and the solution of (11) converges to Ē.

(a) (b) (c)

Figure 1: The dynamical behavior of x(t), y(t) and z(t) using different values of ν = {0.8, 0.95, 1} for the parameters existed in Example
1.

(a) (b) (c)

Figure 2: x(t), y(t) and z(t) versus time using different values of ν = {0.8, 0.95, 1} for the parameters existed in Example 1.
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Consider the following model

x(tj+1) = x(tj) +m
[
0.472 y(tj)− 0.25x(tj) + 0.1

]
,

y(tj+1) = y(tj) +m
[0.82(1.27)

z(tj)
− 0.6x(tj) + 0.8

]
, (12)

z(tj+1) = z(tj) +m
[
0.3 y(tj)(1.5− z(tj)) + 0.3 z(tj)(1.5− z(tj))− 0.2 z(tj)

]
,

using the initial conditions(
x(0), y(0), z(0)

)
=
(

6.03502, 1.79015, 0.825837
)
.

Table 2: Some Numerical outputs of (x, y, z) for Example 2.

(x, y, z) (x, y, z) (x, y, z)
ν = 0.8 ν = 0.95 ν = 1

(6.01981 , 1.74808 , 0.835652) (6.02778 , 1.77011 , 0.830512) (6.02938 , 1.77455 , 0.829476)
(6.00418 , 1.70585 , 0.845032) (6.02043 , 1.75003 , 0.835089) (6.02368 , 1.75893 , 0.833055)
(5.98811 , 1.66351 , 0.853992) (6.01299 , 1.72992 , 0.839568) (6.01793 , 1.74329 , 0.836575)
(5.9716 , 1.62107 , 0.862544) (6.00546 , 1.70978 , 0.843952) (6.01211 , 1.72763 , 0.840037)
(5.95467 , 1.57858 , 0.870701) (5.99782 , 1.68962 , 0.848241) (6.00623 , 1.71195 , 0.84344)
(5.93732 , 1.53606 , 0.878475) (5.99009 , 1.66944 , 0.852436) (6.0003 , 1.69626 , 0.846787)
(5.91954 , 1.49353 , 0.885878) (5.98226 , 1.64924 , 0.85654) (5.99431 , 1.68056 , 0.850077)
(5.90133 , 1.45102 , 0.892923) (5.97433 , 1.62902 , 0.860554) (5.98825 , 1.66484 , 0.853311)
(5.88271 , 1.40856 , 0.899619) (5.9663 , 1.60879 , 0.864479) (5.98214 , 1.64912 , 0.85649)
(5.86368 , 1.36616 , 0.905979) (5.95818 , 1.58855 , 0.868316) (5.97597 , 1.63338 , 0.859614)

For the parameters of themodel (12), we chose different values of ν = {0.8, 0.95, 1}. Figures (3(a)-
3(c)) show the dynamical behavior of x(t), y(t) and z(t) for various values of ν = {0.8, 0.95, 1} for
the parameters of (12). Figures (4(a)-4(c)) show the behavior of x(t), y(t) and z(t) versus time
using various values of ν = {0.8, 0.95, 1} for the parameters of (12). By Lemma 2.1, Ē is asymp-
totically stable for the parameters of the model (12), and the solution of (12) converges to Ē.

(a) (b) (c)

Figure 3: The dynamical behavior of x(t), y(t) and z(t) using different values of ν = {0.8, 0.95, 1} for the parameters existed in Example
2.
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(a) (b) (c)

Figure 4: x(t), y(t) and z(t) versus time using different values of ν = {0.8, 0.95, 1} for the parameters existed in Example 2.

Consider the following model

x(tj+1) = x(tj) +m
[
0.865 y(tj)− 0.268x(tj) + 0.41

]
,

y(tj+1) = y(tj) +m
[0.736

z(tj)
− 0.22x(tj) + 0.08

]
, (13)

z(tj+1) = z(tj) +m
[
0.33 y(tj) (1000− z(tj)) + 0.03 z(tj) (1000− z(tj))− 0.2 z(tj)

]
,

using the initial conditions(
x(0), y(0), z(0)

)
=
(

6.03502, 1.79015, 0.825837
)
.

Table 3: Some Numerical outputs of (x, y, z) for Example 3.

(x, y, z) (x, y, z) (x, y, z)
ν = 0.8 ν = 0.95 ν = 1

(6.04422 , 1.79015 , 0.840044) (6.0394 , 1.79015 , 0.832605) (6.03843 , 1.79015 , 0.831105)
(6.05335 , 1.78953 , 0.853951) (6.04377 , 1.79001 , 0.839305) (6.04183 , 1.79006 , 0.836331)
(6.0624 , 1.78831 , 0.867559) (6.04812 , 1.78973 , 0.845937) (6.04522 , 1.78989 , 0.841517)
(6.07136 , 1.78653 , 0.880867) (6.05245 , 1.78931 , 0.852501) (6.04861 , 1.78964 , 0.846661)
(6.08021 , 1.78421 , 0.893877) (6.05677 , 1.78876 , 0.858997) (6.05198 , 1.7893 , 0.851764)
(6.08895 , 1.78138 , 0.90659) (6.06106 , 1.78808 , 0.865425) (6.05533 , 1.78888 , 0.856826)
(6.09755 , 1.77806 , 0.919007) (6.06533 , 1.78727 , 0.871785) (6.05868 , 1.78839 , 0.861847)
(6.10602 , 1.77428 , 0.931132) (6.06957 , 1.78634 , 0.878077) (6.06201 , 1.78781 , 0.866826)
(6.11433 , 1.77006 , 0.942966) (6.07379 , 1.78529 , 0.884302) (6.06533 , 1.78716 , 0.871765)
(6.12249 , 1.7654 , 0.954512) (6.07799 , 1.78412 , 0.89046) (6.06863 , 1.78644 , 0.876662)

For the parameters of themodel (13), we chose different values of ν = {0.8, 0.95, 1}. Figures (5(a)-
5(c)) show the dynamical behavior of x(t), y(t) and z(t) for various values of ν = {0.8, 0.95, 1} for
the parameters of (13). Figures (6(a)-6(c)) show the behavior of x(t), y(t) and z(t) versus time
using various values of ν = {0.8, 0.95, 1} for the parameters of (13). By Lemma 2.1, Ē is asymp-
totically stable for the parameters of the model (13), and the solution of (13) converges to Ē.
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(a) (b) (c)

Figure 5: The dynamical behavior of x(t), y(t) and z(t) using different values of ν = {0.8, 0.95, 1} for the parameters existed in Example
3.

(a) (b) (c)

Figure 6: x(t), y(t) and z(t) versus time using different values of ν = {0.8, 0.95, 1} for the parameters existed in Example 3.

4 Conclusions

In this paper, we have presented the Caputo fractional-order model (2) and its discretized
model (4) that describes the concentration rates among insulin, glucose, and healthy β-cells. The
analysis of the local stability of the presented (discretization) Caputo fractional-order model has
been discussed. Further, we have computed numerical solutions for the considered model via a
powerful technique due to Euler. For the demonstration of our proposed method, we provide
graphical representation of the concerned results using some real values for the parameters in-
volve in our considered model. Here, we have derived an algorithm to simulate our results for
the considered nonlinear systems. The numerical solution of the proposed model (4) shows time
efficiency on x(t), y(t) and z(t) concentrations. Numerical simulation is done by using the gener-
alized Euler method. From the numerical simulations, it is deduced that the dynamical behaviors
for the levels of x(t), y(t) and z(t) are stable over time. On the basis of numerical results and
simulations, it is concluded that the proposed model is stable at the equilibrium point Ē and is
better than its integer order form. In future work, we will investigate a control scheme to drive the
glucose-insulin system to stable behavior. Researchers from many scientific areas can also extend
this work to other biological systems.

Data Availability The experimental data used to support the findings of this study are taken from
[15].

Acknowledgement We are thankful to anonymous reviewers for their valuable comments and
suggestions to improve the presentation of this paper.

10



A. Alalyani Malaysian J. Math. Sci. 17(1): 1–12 (2023) 1 - 12

Conflicts of Interest The author declares that he has no conflicts of interest to report regarding
the publication of this study.

References

[1] N. H. Abel (1823). Solution de quelques problèmes à l’aide d’intégrales définies. Mag.
Naturv., 1(2), 1–127.

[2] E. Ackerman, J.W. Rosevear &W. F.McGuckin (1964). Amathematicalmodel of the glucose-
tolerance test. Phys. Med. Biol., 9(2), 203–213. https://doi.org/10.1088/0031-9155/9/2/307.

[3] N.A.Ahmad,N. Senu, Z. B. Ibrahim&M.Othman (2022). Stability analysis of diagonally im-
plicit two derivative runge-kutta methods for solving delay differential equations. Malaysian
Journal of Mathematical Sciences, 16(2), 215–235. https://doi.org/10.47836/mjms.16.2.04.

[4] S. M. Al-Zahrani, F. E. I. Elsmih, K. S. Al-Zahrani & S. Saber (2022). A fractional order SITR
model for forecasting of transmission of COVID-19: sensitivity statistical analysis. Malaysian
Journal of Mathematical Sciences, 16(3), 517–536. https://doi.org/10.47836/mjms.16.3.08.

[5] A. Alalyani (2022). Numerical solution of the fractional-order mathematical model of β-cells
kinetics and glucose-insulin system using a predictor corrector method. Mathematical Models
and Computer Simulations, 14(1), 159–171. https://doi.org/10.1134/S2070048222010021.

[6] M. H. Alshehri, S. Saber & F. Z. Duraihem (2021). Dynamical analysis of fractional-order
of IVGTT glucose-insulin interaction. International Journal of Nonlinear Sciences and Numerical
Simulation, pp. 000010151520200201. https://doi.org/10.1515/ijnsns-2020-0201.

[7] G. L. Atkins (1971). Investigation of some theoretical models relating the concentrations of
glucose and insulin in plasma. Journal of Theoretical Biology, 32(3), 471–494. https://doi.org/
10.1016/0022-5193(71)90152-4.

[8] J. Bajaj, G. Subba Rao, J. Subba Rao & R. Khardori (1987). A mathematical model for in-
sulin kinetics and its application to protein-deficient (malnutrition-related) diabetes mel-
litus (PDDM). Journal of Theoretical Biology, 126(4), 491–503. https://doi.org/10.1016/
S0022-5193(87)80154-6.

[9] M. Chuedoung, W. Sarika & Y. Lenbury (2009). Dynamical analysis of a nonlinear model for
glucose-insulin system incorporating delays and β-cells compartment. Nonlinear Analysis-
theory Methods Applications, 71(12), 1048–1058. https://doi.org/10.1016/j.na.2009.01.129.

[10] M. F. Faraloya, S. Shafie, F. M. Siam, R. Mahmud & S. O. Ajadi (2021). Numerical simulation
and optimization of radiotherapy cancer treatments using the Caputo fractional derivative.
Malaysian Journal of Mathematical Sciences, 15(2), 161–187.

[11] A. Hurwitz (1964). On the conditions under which an equation has only roots with negative
real parts. Selected papers on mathematical trends in control theory, 65, 273–284.

[12] J. G. Liu & M. Y. Xu (2008). Study on the viscoelasticity of cancellous bone based on higher-
order fractional models. 2008 2nd International Conference on Bioinformatics and Biomedical
Engineering, pp. 1733–1736. https://doi.org/10.1109/ICBBE.2008.761.

[13] Z. Odibat & N. Shawagfeh (2007). Generalized taylor’s formula. Applied Mathematics and
Computation, 186(1), 286–293. https://doi.org/10.1016/j.amc.2006.07.102.

11

https://doi.org/10.1088/0031-9155/9/2/307
https://doi.org/10.47836/mjms.16.2.04
https://doi.org/10.47836/mjms.16.3.08
https://doi.org/10.1134/S2070048222010021
https://doi.org/10.1515/ijnsns-2020-0201
https://doi.org/10.1016/0022-5193(71)90152-4
https://doi.org/10.1016/0022-5193(71)90152-4
https://doi.org/10.1016/S0022-5193(87)80154-6
https://doi.org/10.1016/S0022-5193(87)80154-6
https://doi.org/10.1016/j.na.2009.01.129
https://doi.org/10.1109/ICBBE.2008.761
https://doi.org/10.1016/j.amc.2006.07.102


A. Alalyani Malaysian J. Math. Sci. 17(1): 1–12 (2023) 1 - 12

[14] Z. Odibat & S. Momani (2008). An algorithm for the numerical solution of differential equa-
tions of fractional order. Journal of applied mathematics & informatics, 26(1-2), 15–27.

[15] G. Pacini & R. N. Bergman (1986). Minmod: a computer program to calculate insulin sensi-
tivity andpancreatic responsivity from the frequently sampled intravenous glucose tolerance
test. Computer Methods and Programs in Biomedicine, 23(2), 113–122. https://doi.org/10.1016/
0169-2607(86)90106-9.

[16] I. Podlubny (1999). Fractional Differential Equations. Academic Press, New York.

[17] S. Saber&A.Alalyani (2022). Stability analysis and numerical simulations of IVGTT glucose-
insulin interaction models with two time delays. Mathematical Modelling and Analysis, 27(3),
383–407. https://doi.org/10.3846/mma.2022.14007.

[18] S. Saber & S. M. Alzahrani (2019). Hopf bifurcation on fractional ordered glucose-insulin
system with time-delay. Albaha University Journal of Basic and Applied Sciences, 3(2), 27–34.

[19] S. Sayed, B. Eihab, S. Alzahrani & I. Noaman (2018). A mathematical model of glucose-
insulin interaction with time delay. Journal of Applied Computational Mathematics, 7(3), 417.
https://doi.org/10.4172/2168-9679.1000416.

[20] A. R. Seadawy (2014). Stability analysis for Zakharov-Kuznetsov equation of weakly nonlin-
ear ion-acousticwaves in a plasma. Computers&Mathematics withApplications, 67(1), 172–180.
https://doi.org/10.1016/j.camwa.2013.11.001.

[21] U. Younas, M. Younis, A. R. Seadawy, S. Rizvi, S. Althobaiti & S. Sayed (2021). Diverse exact
solutions for modified nonlinear Schrodinger equation with conformable fractional deriva-
tive. Results in Physics, 20, 103766. https://doi.org/10.1016/j.rinp.2020.103766.

12

https://doi.org/10.1016/0169-2607(86)90106-9
https://doi.org/10.1016/0169-2607(86)90106-9
https://doi.org/10.3846/mma.2022.14007
https://doi.org/10.4172/2168-9679.1000416
https://doi.org/10.1016/j.camwa.2013.11.001
https://doi.org/10.1016/j.rinp.2020.103766

	Introduction
	Generalized Euler Method (See Odibat2008)
	Stability Analysis of a Discretization Model

	Numerical Results and Simulations
	Conclusions

